• 1.

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 2.

    Afshin, A. et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393, 1958–1972 (2019).

    Article 

    Google Scholar
     

  • 3.

    Gakidou, E. et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1345–1422 (2017).

    Article 

    Google Scholar
     

  • 4.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 5.

    Herrero, M. et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Change 6, 452–461 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 7.

    Paulot, F. & Jacob, D. J. Hidden cost of US agricultural exports: particulate matter from ammonia emissions. ammonia pollution from farming may exact hefty health costs. Environ. Sci. Technol. 48, 903–908 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 8.

    Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 9.

    Gerten, D. et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 3, 200–208 (2020).

    Article 

    Google Scholar
     

  • 10.

    Heck, V., Hoff, H., Wirsenius, S., Meyer, C. & Kreft, H. Land use options for staying within the planetary boundaries–synergies and trade-offs between global and local sustainability goals. Glob. Environ. Change 49, 73–84 (2018).

    Article 

    Google Scholar
     

  • 11.

    Campbell, B. M. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. 22, 8 (2017).

  • 12.

    Bowles, N., Alexander, S. & Hadjikakou, M. The livestock sector and planetary boundaries: a ‘limits to growth’ perspective with dietary implications. Ecol. Econ. 160, 128–136 (2019).

    Article 

    Google Scholar
     

  • 13.

    Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 14.

    Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 15.

    2017 Food & Health Survey (IFIC Foundation, 2017).

  • 16.

    Climate Change and Land (IPCC, 2019).

  • 17.

    van’t Riet, J., Sijtsema, S. J., Dagevos, H. & de Bruijn, G. J. The importance of habits in eating behaviour. An overview and recommendations for future research. Appetite 57, 585–596 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 18.

    Nestle, M. et al. Behavioral and social influences on food choice. Nutr. Rev. 56, 50–64 (1998).

    Article 

    Google Scholar
     

  • 19.

    Bachman, J., Christaldi, J. & Tomasko, A. Translating MyPlate into food selections that meet dietary guidelines recommendations. J. Hum. Sci. Ext. 4, 111–123 (2016).


    Google Scholar
     

  • 20.

    Wall, C. L., Gearry, R. B., Pearson, J., Parnell, W. & Skidmore, P. M. L. Dietary intake in midlife and associations with standard of living, education and nutrition literacy. J. New Zeal. Med. Assoc. 127, 30–40 (2014).


    Google Scholar
     

  • 21.

    Kennedy, E. & Davis, C. A. Dietary guidelines 2000—the opportunity and challenges for reaching the consumer. J. Am. Diet. Assoc. 100, 1462–1465 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 22.

    Arsenault, J. E., Fulgoni, V. L., Hersey, J. C. & Muth, M. K. A novel approach to selecting and weighting nutrients for nutrient profiling of foods and diets. J. Acad. Nutr. Diet. 112, 1968–1975 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 23.

    Sukhdev, P. Smarter metrics will help fix our food system world-view. Nature 558, 7 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 24.

    Clune, S., Crossin, E. & Verghese, K. Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean. Prod. 140, 766–783 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Stylianou, K. S. et al. A life cycle assessment framework combining nutritional and environmental health impacts of diet: a case study on milk. Int. J. Life Cycle Assess. 21, 734–746 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Heller, M. C., Keoleian, G. A. & Willett, W. C. Toward a life cycle-based, diet-level framework for food environmental impact and nutritional quality assessment: a critical review. Environ. Sci. Technol. 47, 12632–12647 (2013).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 27.

    Fulgoni, V. L., Keast, D. R. & Drewnowski, A. Development and validation of the nutrient-rich foods index: a tool to measure nutritional quality of foods. J. Nutr. 139, 1549–1554 (2009).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 28.

    Katz, D. L. et al. The stratification of foods on the basis of overall nutritional quality: the Overall Nutritional Quality Index. Am. J. Heal. Promot. 24, 133–143 (2009).

    Article 

    Google Scholar
     

  • 29.

    Arvaniti, F. & Panagiotakos, D. B. Healthy indexes in public health practice and research: a review. Crit. Rev. Food Sci. Nutr. 48, 317–327 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 30.

    Clark, M. A., Springmann, M., Hill, J. & Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl Acad. Sci. USA 116, 23357–23362 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 31.

    Kesse-Guyot, E. et al. Sustainability analysis of French dietary guidelines using multiple criteria. Nat. Sustain. 3, 377–385 (2020).

    Article 

    Google Scholar
     

  • 32.

    Springmann, M., Godfray, H. C. J., Rayner, M. & Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl Acad. Sci. USA 113, 4146–4151 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 33.

    Scientific Report of the 2015 Dietary Guidelines Advisory Committee (Dietary Guidelines Advisory Committee, 2015).

  • 34.

    Saarinen, M. et al. Life cycle assessment approach to the impact of home-made, ready-to-eat and school lunches on climate and eutrophication. J. Clean. Prod. 28, 177–186 (2012).

    Article 

    Google Scholar
     

  • 35.

    Weidema, B. P. & Stylianou, K. S. Nutrition in the life cycle assessment of foods—function or impact? Int. J. Life Cycle Assess. 25, 1210–1216 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Fulgoni, V. L. III, Wallace, T. C., Stylianou, K. S. & Jolliet, O. Calculating intake of dietary risk components used in the global burden of disease studies from the whatwe eat in america/national health and nutrition examination surveys. Nutrients 10, 1441 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 37.

    Kunkel, D. & McKinley, C. Developing ratings for food products: Lessons learned from media rating systems. J. Nutr. Educ. Behav. 46, 578–588 (2007).


    Google Scholar
     

  • 38.

    Bulle, C. et al. IMPACT World+: a globally regionalized life cycle impact assessment method. Int. J. Life Cycle Assess. 24, 1653–1674 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Meier, T. & Christen, O. Environmental impacts of dietary recommendations and dietary styles: Germany as an example. Environ. Sci. Technol. 47, 877–888 (2013).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 40.

    Greenhouse Gas Equivalencies Calculator (Environmental Protection Agency, 2019); https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

  • 41.

    Masset, G., Vieux, F. & Darmon, N. Which functional unit to identify sustainable foods? Public Health Nutr. 18, 2488–2497 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 42.

    Saarinen, M., Fogelholm, M., Tahvonen, R. & Kurppa, S. Taking nutrition into account within the life cycle assessment of food products. J. Clean. Prod. 149, 828–844 (2017).

    Article 

    Google Scholar
     

  • 43.

    De Schryver, A. M., Brakkee, K. W., Goedkoop, M. J. & Huijbregts, M. A. J. Characterization factors for global warming in life cycle assessment based on damages to humans and ecosystems. Environ. Sci. Technol. 43, 1689–1695 (2009).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 44.

    Liebe, D. L., Hall, M. B. & White, R. R. Contributions of dairy products to environmental impacts and nutritional supplies from United States agriculture. J. Dairy Sci. 103, 10867–10881 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 45.

    Avadí, A., Vázquez-Rowe, I., Symeonidis, A. & Moreno-Ruiz, E. First series of seafood datasets in Ecoinvent: setting the pace for future development. Int. J. Life Cycle Assess. 25, 1333–1342 (2020).

    Article 
    CAS 

    Google Scholar
     

  • 46.

    Avadí, A., Henriksson, P. J. G., Vázquez-Rowe, I. & Ziegler, F. Towards improved practices in life cycle assessment of seafood and other aquatic products. Int. J. Life Cycle Assess. 23, 979–981 (2018).

    Article 

    Google Scholar
     

  • 47.

    Clark, M. & Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. 12, 064016 (2017).


    Google Scholar
     

  • 48.

    Reinhardt, S. L. et al. Systematic review of dietary patterns and sustainability in the United States. Adv. Nutr. 11, 1016–1031 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 49.

    Guide to Creating a Front of Pack (FoP) Nutrition Label for Pre-packed Products Sold through Retail Outlets (UK Department of Health, 2013); https://doi.org/10.1093/heapro/dap032

  • 50.

    van Dooren, C., Douma, A., Aiking, H. & Vellinga, P. Proposing a novel index reflecting both climate impact and nutritional impact of food products. Ecol. Econ. 131, 389–398 (2017).

    Article 

    Google Scholar
     

  • 51.

    Drescher, L. S., Thiele, S. & Mensink, G. B. M. A new index to measure healthy food diversity better reflects a healthy diet than traditional measures. J. Nutr. 137, 647–651 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 52.

    Dwivedi, S. L. et al. Diversifying food systems in the pursuit of sustainable food production and healthy diets. Trends Plant Sci. 22, 842–856 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 53.

    White, R. R. & Hall, M. B. Nutritional and greenhouse gas impacts of removing animals from US agriculture. Proc. Natl Acad. Sci. USA 114, E10301–E10308 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 54.

    Mozaffarian, D. Foods, nutrients, and health: when will our policies catch up with nutrition science? Lancet Diabetes Endocrinol. 5, 85–88 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 55.

    Chukalla, A. D., Krol, M. S. & Hoekstra, A. Y. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching. Hydrol. Earth Syst. Sci. 19, 4877–4891 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 56.

    Huang, G. et al. Water-saving agriculture can deliver deep water cuts for China. Resour. Conserv. Recycl. 154, 104578 (2020).

    Article 

    Google Scholar
     

  • 57.

    Henderson, A. D. et al. Spatial variability and uncertainty of water use impacts from US feed and milk production. Environ. Sci. Technol. 51, 2382–2391 (2017).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 58.

    Bidlack, W. R., Wang, W. & Clemens, R. Water: the world’s most precious resource. J. Food Sci. 69, crh55–crh60 (2004).

    CAS 

    Google Scholar
     

  • 59.

    Pfister, S. & Bayer, P. Monthly water stress: spatially and temporally explicit consumptive water footprint of global crop production. J. Clean. Prod. 73, 52–62 (2014).

    Article 

    Google Scholar
     

  • 60.

    Boulay, A. M., Lenoir, L. & Manzardo, A. Bridging the data gap in the water scarcity footprint by using crop-specific AWARE factors. Water 11, 2634 (2019).

    Article 

    Google Scholar
     

  • 61.

    Mekonnen, M. M. & Hoekstra, A. Y. A global assessment of the water footprint of farm animal products. Ecosystems 15, 401–415 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 62.

    Mekonnen, M. M. & Hoekstra, A. Y. The Green, Blue and Grey Water Footprint of Farm Animals and Animal Products. Value of Water Research Report Series No. 48 (UNESCO, 2010).

  • 63.

    Heller, M. C., Willits-Smith, A., Meyer, R., Keoleian, G. A. & Rose, D. Greenhouse gas emissions and energy use associated with production of individual self-selected US diets. Environ. Res. Lett. 13, 044004 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 64.

    Hospido, A., Davis, J., Berlin, J. & Sonesson, U. A review of methodological issues affecting LCA of novel food products. Int. J. Life Cycle Assess. 15, 44–52 (2010).

    Article 

    Google Scholar
     

  • 65.

    National Academies of Sciences Engineering and Medicine. Dietary Reference Intakes for Sodium and Potassium (National Academies Press, 2019); https://doi.org/10.17226/25353

  • 66.

    Fiolet, T. et al. Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort. Br. Med. J. 360, 322 (2018).

    Article 

    Google Scholar
     

  • 67.

    Rico-Campà, A. et al. Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. Br. Med. J. 365, 1949 (2019).

    Article 

    Google Scholar
     

  • 68.

    Liu, G. et al. Meat cooking methods and risk of type 2 diabetes: results from three prospective cohort studies. Diabetes Care 41, 1049–1060 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 69.

    Parker, L., Burns, A. C. & Sanchez, E. Local Government Actions to Prevent Childhood Obesity (National Academies Press, 2010); https://doi.org/10.17226/12674

  • 70.

    Härkänen, T. et al. The welfare effects of health-based food tax policy. Food Policy 49, 196–206 (2014).

    Article 

    Google Scholar
     

  • 71.

    Springmann, M. et al. Mitigation potential and global health impacts from emissions pricing of food commodities. Nat. Clim. Chang. 7, 69–74 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 72.

    Mozaffarian, D. et al. Cost-effectiveness of financial incentives and disincentives for improving food purchases and health through the US Supplemental Nutrition Assistance Program (SNAP): a microsimulation study. PLoS Med. 15, e1002661 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 73.

    National Health and Nutrition Examination Survey (NHANES) (National Center for Health Statistics, 2018); https://www.cdc.gov/nchs/nhanes/index.htm

  • 74.

    US Department of Agriculture Food Coding Scheme (Centers for Disease Control); https://www.cdc.gov/nchs/tutorials/Dietary/SurveyOrientation/ResourceDietaryAnalysis/Info2.htm

  • 75.

    Food Labeling, Nutrition, Reporting and Recordkeeping Requirements (FR Citation:81 FR 34000) Federal Register Vol. 81 (Food and Drug Administration, 2016); https://www.regulations.gov/document?D=FDA-2004-N-0258-0136

  • 76.

    Roy, P. et al. A review of life cycle assessment (LCA) on some food products. J. Food Eng. 90, 1–10 (2009).

    Article 

    Google Scholar
     

  • 77.

    GBD Results Tool (Institute for Health Metrics and Evaluation, 2018); http://ghdx.healthdata.org/gbd-results-tool

  • 78.

    Global Burden of Disease Study 2016 (GBD 2016) Population Estimates 1950–2016 (Global Burden of Disease Collaborative Network, 2017); http://ghdx.healthdata.org/record/global-burden-disease-study-2016-gbd-2016-population-estimates-1950-2016

  • 79.

    Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation (World Health Organization, 2003).

  • 80.

    Ridoutt, B. & Huang, J. Three main ingredients for sustainable diet research. Environ. Sci. Technol. 53, 2948–2949 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 81.

    Stylianou, K. S. Nutritional and Environmental Impacts of Foods on Human Health Ch. 4, PhD thesis, Univ. Michigan (2018).

  • 82.

    Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 83.

    Hong, J., Shaked, S., Rosenbaum, R. K. & Jolliet, O. Analytical uncertainty propagation in life cycle inventory and impact assessment: application to an automobile front panel. Int. J. Life Cycle Assess. 15, 499–510 (2010).

    CAS 
    Article 

    Google Scholar